CCA

Common Component Architecture

An Overview of Components for
Scientific Computing
and
Introduction to the Common
Component Architecture

CCA Forum Tutorial Working Group
B http://www.cca-forum.org/tutorials/
2y tutorial-wg@-cca-forum.org O

CCA Overview

Common Component Architecture

Goals of This Module

Introduce basic concepts and vocabulary of
component-based software engineering

Highlight the special demands of high-performance
scientific computing on component environments

Introduce some terminology and concepts from the
Common Component Architecture

Provide a unifying context for the remaining talks
— For those attending the extended CCA tutorial

CC A CCA Overview
Common CoOmMPONENt AT LE U e

Motivation: Modern Scientific Software
Engineering Challenges

 Productivity
— Time to first solution (prototyping)
— Time to solution (“production”)
— Software infrastructure requirements (“other stuff needed”)

« Complexity
— Increasingly sophisticated models
— Model coupling — multi-scale, multi-physics, etc.
— “Interdisciplinarity”

 Performance
— Increasingly complex algorithms
— Increasingly complex computers
— Increasingly demanding applications

CC A CCA Overview

ccccccccccccccccccccccccccccc

Motivation: For Library Developers

* People want to use your software, but need wrappers

In languages you don’t support
— Many component models provide language interoperability

« Discussions about standardizing interfaces are often

sidetracked into implementation issues
— Components separate interfaces from implementation

* You want users to stick to your published interface
and prevent them from stumbling (prying) into the

Implementation details
— Most component models actively enforce the separation

CCA CCA Overvie
Common CoOmMPONENt AT LE U e

Motivation: For Application Developers
and Users

* You have difficulty managing multiple third-party
libraries in your code

* You (want to) use more than two languages in your
application

e Your code is long-lived and different pieces evolve at
different rates

e You want to be able to swap competing
Implementations of the same idea and test without
modifying any of your code

* You want to compose your application with some
other(s) that weren’t originally designed to be
combined

CCA CCA Overvie

Common Component Architecture

Some Observations About Software...

* “The complexity of software is an essential
property, not an accidental one.” [Brooks]
— We can’t get rid of complexity

e “Our failure to master the complexity of
software results in projects that are late, over
budget, and deficient in their stated
requirements.” [Booch]

— We must find ways to manage it

CCA Overvie

Common Component Architecture

More Observations...

“A complex system that works Is invariably
found to have evolved from a simple system
that worked... A complex system designed
from scratch never works and cannot be
patched up to make it work.” [Gall]

— Build up from simpler pieces

“The best software Is code you don’t have to
write” [Jobs]
— Reuse code wherever possible

CC A CCA Overview

Component-Based Software
Engineering

« CBSE methodology is emerging, especially from business
and internet areas

o Software productivity
— Provides a “plug and play” application development environment
— Many components available “off the shelf”
— Abstract interfaces facilitate reuse and interoperability of software

o Software complexity
— Components encapsulate much complexity into “black boxes”
— Plug and play approach simplifies applications
— Model coupling is natural in component-based approach

o Software performance (indirect)

— Plug and play approach and rich “off the shelf” component library
simplify changes to accommodate different platforms

CCLN e oo T
A Simple Example:
Numerical Integration Components

Interoperable components
(provide same interfaces)

FunctionPort

IntegratorPort FunctionPort

NonlinearFunction

FunctionPort

LinearFunction

Midpointintegrator

IntegratorPort

FunctionPort

Driver

IntegratorPort WEEETaleile]g]aleli

PiFunction

RandomGeneratorPort

RandomGeneratorPort

MonteCarlolntegrator

RandomGenerator

CCA

Common Component Architecture

CCA Overview

Many Applications are Possible...

Dashed lines
indicate alternate
connections

IntegratorPort §,

Driver

Create different applications
in "plug-and-play" fashion

IntegratorPort FunctionPort 3,

Midpointintegrator

R FunctionPort

NonlinearFunction

FunctionPort

““
"
ey,

.
.
“I\

5 LinearFunction

FunctionPort

[el =loi®l | FunctionPort £* : :
PiFunction
RandomGeneratorPort
RandomGeneratorPort

MonteCarlolntegrator

RandomGenerator

10

CC A CCA Overview

Common Component Architecture

The “Sociology” of Components

« Components need to be shared to be truly useful

— Sharing can be at several levels
e Source, binaries, remote service

— Various models possible for intellectual property/licensing

« Components with different IP constraints can be mixed in a
single application

 Peer component models facilitate collaboration of
groups on software development
— Group decides overall architecture and interfaces
— Individuals/sub-groups create individual components

11

CC A CCA Overview
Common Compone! U

Who Writes Components?

« “Everyone” involved in creating an application

can/should create components
— Domain scientists as well as computer scientists and applied
mathematicians
— Most will also use components written by other groups

* Allows developers to focus on their interest/specialty
— Get other capabilities via reuse of other's components

e Sharing components within scientific domain allows

everyone to be more productive
— Reuse instead of reinvention

e As a unit of publication, a well-written and —tested

component is like a high-quality library
— Should receive same degree of recognition
— Often a more appropriate unit of publication/recognition than
an entire application code b

CC A CCA Overview

CCA Concepts: Components

FunctionPort

IntegratorPort FunctionPort

Midpointintegrator NonlinearFunction

 Components are a unit of software composition
— Composition is based on interfaces (ports)

« Components provide/use one or more ports
— A component with no ports isn’t very interesting
— Components interact via ports; implementation is opaque to
the outside world

 Components include some code which interacts with
the CCA framework

e The granularity of components is dictated by the
application architecture and by performance
considerations

« Components are peers
— Application architecture determines relationships 13

CC A CCA Overview

What is a Component Architecture?

* A set of standards that allows:
— Multiple groups to write units of software (components)...

— And have confidence that their components will work with
other components written in the same architecture

 These standards define...
— The rights and responsibilities of a component
— How components express their interfaces

— The environment in which are composed to form an
application and executed (framework)

— The rights and responsibilities of the framework

14

CCA Overview

Common Component Architecture

CCA Concepts: Frameworks

The framework provides the means to “hold”
components and compose them into applications
— The framework is often application’s “main” or “program”

Frameworks allow exchange of ports among
components without exposing implementation details

Frameworks provide a small set of standard services
to components
— BuilderService allow programs to compose CCA apps

Frameworks may make themselves appear as
components in order to connect to components Iin
other frameworks

Currently: specific frameworks support specific

computing models (parallel, distributed, etc.).

Future: full flexibility through integration or

Interoperation 15

CCA Overview

CCA Concepts: Ports

IntegratorPort FunctionPort

FunctionPort

Midpointintegrator NonlinearFunction

Components interact through well-defined interfaces,
or ports

— In OO languages, a port is a class or interface

— In Fortran, a port is a bunch of subroutines or a module

Components may provide ports — implement the
class or subroutines of the port (EERlEazod)

Components may use ports — call methods or
subroutines in the port (| “Uses’ Port)

Links denote a procedural (caller/callee) relationship,
not dataflow!

— e.g., FunctionPort could contain: evaluate(in Arg, out Result)

16

CC A CCA Overview

Common Component Architecture

Interfaces, Interoperability, and Reuse

* Interfaces define how components interact...

 Therefore interfaces are key to interoperability and
reuse of components

e In many cases, “any old interface” will do, but...

« General plug and play interoperability requires
multiple implementations providing the same
Interface

* Reuse of components occurs when they provide
Interfaces (functionality) needed in multiple
applications

17

CC A CCA Overview

Common Component Architecture

Designing for Reuse, Implications

e Designing for interoperability and reuse requires
“standard” interfaces
— Typically domain-specific
— “Standard” need not imply a formal process, may mean
“widely used”

* Generally means collaborating with others

« Higher initial development cost (amortized over
multiple uses)

 Reuse implies longer-lived code
— thoroughly tested
— highly optimized
— Improved support for multiple platforms

18

CCA Overview

Common Component Architecture

Relationships:
Components, Objects, and Libraries

Components are typically discussed as objects or

collections of objects

— Interfaces generally designed in OO terms, but...
— Component internals need not be OO

— OO languages are not required

Component environments can enforce the use of

published interfaces (prevent access to internals)
— Libraries can not

It is possible to load several instances (versions) of a

component in a single application
— Impossible with libraries

Components must include some code to interface

with the framework/component environment
— Libraries and objects do not

19

nt Architecture

CC A CCA Overview
Common Compone!]

Domain-Specific Frameworks vs
Generic Component Architectures

Domain-Specific Generic
 Often known as * Provide the infrastructure to
“frameworks” hook components together
« Provide a significant — Domain-specific

software infrastructure to Infrastructure can be built as

support applications in a ComPOHGHtS |
given domain e Usable in many domains

— Often attempts to generalize — Few assumptions about
an existing large application I?/Ipoelécgtlogrtunities for reuse
« Often hard to adapt to use PP

outside the original domain * Better supports model
_ Tend to assume a particular coupling across traditional

structure/workflow for domain boundaries
application « Relatively rare at present
« Relatively common — Commodity component

models often not so useful

in HPC scientific context
20

Special Needs of Scientific HPC

Support for legacy software
— How much change required for component environment?

Performance is important

— What overheads are imposed by the component
environment?

Both parallel and distributed computing are important

— What approaches does the component model support?

— What constraints are imposed?

— What are the performance costs?

Support for languages, data types, and platforms
— Fortran?

— Complex numbers? Arrays? (as first-class objects)

— Is it available on my parallel computer?

21

CC A CCA Overview

Common Component Architecture

Commodity Component Models

« CORBA, COM, Enterprise JavaBeans
— Arise from business/internet software world

« Componentization requirements can be high

e Can impose significant performance overheads
e No recognition of tightly-coupled parallelism
 May be platform specific

 May have language constraints

e May not support common scientific data types

22

CC A CCA Overview

Common Component Architecture

What is the CCA? (User View)

« A component model specifically designed for
high-performance scientific computing

e Supports both parallel and distributed
applications

e Designed to be implementable without
sacrificing performance

« Minimalist approach makes it easier to
componentize existing software

23

What is the CCA? (2)

« Components are peers
* Not just a dataflow model

e A tool to enhance the productivity of scientific

programmers

— Make the hard things easier, make some
Intractable things tractable

— Support & promote reuse & interoperability

— Not a magic bullet

CCA Overvie

24

Common Compone|

CCA Overview

Importance of
Provides/Uses Pattern
for Ports

Fences between components

— Components must declare both
what they provide and what
they use

— Components cannot interact
until ports are connected

— No mechanism to call anything
not part of a port
Ports preserve high

performance direct connection
semantics...

...While also allowing distributed
computing

Component 1 Component 2

Provides/Uses
Port

Direct Connection

Component 1

Provides
Port
Network

Connection

Component 2

Uses
Port

25

CCA Overview

Common Component Architecture

CCA Concepts: “Direct Connection”
Maintains Local Performance

Calls between components equivalent to a C++

virtual function call: lookup function location, invoke it
— Cost equivalent of ~2.8 F77 or C function calls
— ~48 ns vs 17 ns on 500 MHz Pentium Il Linux box

Language interoperability can impose additional

overheads
— Some arguments require conversion
— Costs vary, but small for typical scientific computing needs

Calls within components have no CCA-imposed
overhead

Implications
— Be aware of costs
— Design so inter-component calls do enough work that

overhead is negligible N

CCA Overview

mmmmmmmmmmmmmmmmmmmmmmmmmmm

CCA Concepts: Framework Stays “Out
of the Way” of Component Parallelism

 Single component multiple data
(SCMD) model is component
analog of widely used SPMD

model

» Each process loaded with the
same set of components wired

the same way
—_— T T —
| « Different components in same
process “talk to each” other via I
| ports and the framework J
R R LR E LR, ! ComponentS: Blue’ Green’ Red
: «Same component in different

: processes talk to each other

Framework: Gray

. through their favorite MCMD/MPMD also supported
: communications layer (i.e. :
: MPI, PVM, GA) : Other component models

.. Ignore para”ellsm entlrely 27

CCA

Common Component Architecture

CCA Overview

Scalability of Scientific Data Components
In CFRFS Combustion Applications

Investigators: S. Lefantzi, J. Ray,
and H. Najm (SNL)

Uses GrACEComponent,
CvodesComponent, etc.

Shock-hydro code with no
refinement

200 x 200 & 350 x 350 meshes
Cplant cluster

— 400 MHz EVS5 Alphas

— 1 Gb/s Myrinet
Negligible component overhead

Worst perf : 73% scaling efficiency
for 200x200 mesh on 48 procs

O
O

200 x 200
350 x 350
Ideal 200 x 200

— — — — |deal 350 x 350

20 30
Number of Procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003, accepted.

28

CC A CCA Overview

CCA Concepts:
MxN Parallel Data Redistribution

« Share Data Among Coupled Parallel Models
— Disparate Parallel Topologies (M processes vs. N)
— e.g. Ocean & Atmosphere, Solver & Optimizer...
— e.g. Visualization (Mx1, increasingly, MxN)

N
Research area -- tools under development

29

CC A CCA Overview

CCA Concepts:
Language Interoperability

e EXxisting language « Babel provides a unified
Interoperability approach in which all
approaches are “point- languages are
to-point” solutions considered peers

« Babel used primarily at
Interfaces

f77

/f??\

C fo0 C fo0
C++ Python

C++ Python

Babel tutorial
Java Java | coming up!

Few other component models support all languages
and data types important for scientific computing

30

@ Common Component Architecture

What the CCA isn't...

CCA doesn’t specify who owns “main”
— CCA components are peers

— Up to application to define component relationships
* “Driver component” is a common design pattern

CCA doesn'’t specify a parallel programming

environment
— Choose your favorite
— Mix multiple tools in a single application

CCA doesn'’t specify I/O

— But it gives you the infrastructure to create I/O components
— Use of stdio may be problematic in mixed language env.

CCA doesn’t specify interfaces
— But it gives you the infrastructure to define and enforce them
— CCA Forum supports & promotes “standard” interface efforts

CCA doesn’t require (but does support) separation of
algorithms/physics from data

CCA Overview

31

@CCA | CCA Overview
What the CCA is...

« CCA is a specification for a component environment
—Fundamentally, a design pattern
—Multiple “reference” implementations exist
—Being used by applications

« CCA Iincreases productivity
—Supports and promotes software interopability and reuse
—Provides “plug-and-play” paradigm for scientific software

» CCA offers the flexibility to architect your application as

you think best
—Doesn’t dictate component relationships, programming models, etc.
—Minimal performance overhead
—Minimal cost for incorporation of existing software

« CCA provides an environment in which domain-specific

application frameworks can be built
—While retaining opportunities for software reuse at multiple levels

32

CCA Overview

Review of CCA Terms & Concepts

Ports
— Interfaces between components
— Uses/provides model

Framework
— Allows assembly of components into applications

Direct Connection
— Maintain performance of local inter-component calls

Parallelism
— Framework stays out of the way of parallel components

MxN Parallel Data Redistribution
— Model coupling, visualization, etc.

Language Interoperability
— Babel, Scientific Interface Definition Language (SIDL)

33

CCA Overview

Common Component Architecture

Summary

Components are a software engineering tool to help
address software productivity and complexity

Important concepts: components, interfaces,
frameworks, composability, reuse

Scientific component environments come in “domain
specific” and “generic” flavors

Scientific HPC imposes special demands on
component environments
— Which commodity tools may have trouble with

The Common Component Architecture is specially
designed for the needs of HPC

34

